The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Raimund Muscheler

Raimund Muscheler

Professor

Raimund Muscheler

Solar modulation of flood frequency in central Europe during spring and summer on interannual to multi-centennial timescales

Author

  • Markus Czymzik
  • Raimund Muscheler
  • Achim Brauer

Summary, in English

Solar influences on climate variability are one of the most controversially discussed topics in climate research. We analyze solar forcing of flood frequency in central Europe during spring and summer on interannual to multi-centennial timescales, integrating daily discharge data of the River Ammer (southern Germany) back to AD1926 (∼solar cycles 16-23) and the 5500-year flood layer record from varved sediments of the downstream Ammersee. Flood frequency in the River Ammer discharge record is significantly correlated to changes in solar activity when the flood record lags the solar signal by 2-3 years (2-year lag: r = -0:375, p = 0:01; 3-year lag: r = -0:371, p = 0:03). Flood layer frequency in the Ammersee sediment record depicts distinct multi-decadal variations and significant correlations to a total solar irradiance reconstruction (r = -0:4, p <0.0001) and 14C production rates (r = 0:37, p <0.0001), reflecting changes in solar activity. On all timescales, flood frequency is higher when solar activity is reduced. In addition, the configuration of atmospheric circulation associated with periods of increased River Ammer flood frequency broadly resembles that during intervals of reduced solar activity, as expected to be induced by the so-called solar top-down mechanism by model studies. Both atmospheric patterns are characterized by an increase in meridional airflow associated with enhanced atmospheric blocking over central Europe. Therefore, the significant correlations as well as similar atmospheric circulation patterns might provide empirical support for a solar influence on hydroclimate extremes in central Europe during spring and summer by the so-called solar top-down mechanism.

Department/s

  • Quaternary Sciences
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2016-04-01

Language

English

Pages

799-805

Publication/Series

Climate of the Past

Volume

12

Issue

3

Document type

Journal article

Publisher

Copernicus GmbH

Topic

  • Climate Research

Status

Published

ISBN/ISSN/Other

  • ISSN: 1814-9324