The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Per Ahlberg

Per Ahlberg

Professor emeritus

Per Ahlberg

Submarine metalliferous carbonate mounds in the Cambrian of the Baltoscandian Basin induced by vent networks and water column stratification

Author

  • J. Javier Álvaro
  • Lars E. Holmer
  • Yanan Shen
  • Leonid E. Popov
  • Mansoureh Ghobadi Pour
  • Zhifei Zhang
  • Zhiliang Zhang
  • Per Ahlberg
  • Heikki Bauert
  • Laura González-Acebrón

Summary, in English

Two massive precipitation events of polymetallic ore deposits, encrusted by a mixture of authigenic carbonates, are documented from the Cambrian of the semi-enclosed Baltoscandian Basin. δ34S (‒9.33 to ‒2.08‰) and δ33S (‒4.75 to ‒1.06‰) values from the basal sulphide breccias, sourced from contemporaneous Pb–Zn–Fe-bearing vein stockworks, reflect sulphide derived from both microbial and abiotic sulphate reduction. Submarine metalliferous deposits were triggered by non-buoyant hydrothermal plumes: plumes of buoyant fluid were trapped by water column stratification because their buoyancy with respect to the environment reversed, fluids became heavier than their surroundings and gravitational forces brought them to a halt, spreading out laterally from originating vents and resulting in the lateral dispersion of effluents and sulphide particle settling. Subsequently, polymetallic exhalites were sealed by carbonate crusts displaying three generations of ikaite-to-aragonite palisade crystals, now recrystallized to calcite and subsidiary vaterite. Th of fluid inclusions in early calcite crystals, ranging from 65 to 78 ºC, provide minimum entrapment temperatures for carbonate precipitation and early recrystallization. δ13Ccarb (‒1.1 to + 1.6‰) and δ18Ocarb (‒7.6 to ‒6.5‰) values are higher than those preserved in contemporaneous glendonite concretions (‒8.5 to ‒4.7‰ and ‒12.4 to ‒9.1‰, respectively) embedded in kerogenous shales, the latter related to thermal degradation of organic matter. Hydrothermal discharges graded from highly reduced, acidic, metalliferous, and hot (~ 150 ºC) to slightly alkaline, calcium-rich and warm (< 100 ºC), controlling the precipitation of authigenic carbonates.

Department/s

  • Lithosphere and Biosphere Science

Publishing year

2022-12

Language

English

Publication/Series

Scientific Reports

Volume

12

Issue

1

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Geochemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 2045-2322