
Anders Lindskog
Postdoctoral fellow

A Russian record of a Middle Ordovician meteorite shower: Extraterrestrial chromite at Lynna River, St. Petersburg region
Author
Summary, in English
Numerous fossil meteorites and high concentrations of sediment-dispersed extraterrestrial chromite (EC) grains with ordinary chondritic composition have previously been documented from 467 +/- 1.6 Ma Middle Ordovician (Darriwilian) strata. These finds probably reflect a temporarily enhanced influx of L-chondritic matter, following the disruption of the L-chondrite parent body in the asteroid belt 470 +/- 6 Ma. In this study, a Volkhovian-Kundan limestone/marl succession at Lynna River, northwestern Russia, has been searched for EC grains (>63 mu m). Eight samples, forming two separate sample sets, were collected. Five samples from strata around the Asaphus expansusA. raniceps trilobite Zone boundary, in the lower-middle Kundan, yielded a total of 496 EC grains in 65.5 kg of rock (average 7.6 EC grains kg-1, but up to 10.2 grains kg-1). These are extremely high concentrations, three orders of magnitude higher than background levels in similar condensed sediment from other periods. EC grains are typically about 50 times more abundant than terrestrial chrome spinel in the samples and about as common as terrestrial ilmenite. Three stratigraphically lower lying samples, close to the A. lepidurusA. expansus trilobite Zone boundary, at the Volkhov-Kunda boundary, yielded only two EC grains in 38.2 kg of rock (0.05 grains kg-1). The lack of commonly occurring EC grains in the lower interval probably reflects that these strata formed before the disruption of the L-chondrite parent body. The great similarity in EC chemical composition between this and other comparable studies indicates that all or most EC grains in these Russian mid-Ordovician strata share a common sourcethe L-chondrite parent body.
Department/s
- Lithosphere and Biosphere Science
Publishing year
2012
Language
English
Pages
1274-1290
Publication/Series
Meteoritics and Planetary Science
Volume
47
Issue
8
Links
Document type
Journal article
Publisher
Wiley-Blackwell
Topic
- Geology
Status
Published
ISBN/ISSN/Other
- ISSN: 1086-9379