The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Charlotte Möller

Charlotte Möller

Professor

Charlotte Möller

Partial melting in amphibolites in a deep section of the Sveconorwegian Orogen, SW Sweden

Author

  • Edward Hansen
  • Leif Johansson
  • Jenny Andersson
  • Leah LaBarge
  • Daniel Harlov
  • Charlotte Möller
  • Stephanie Vincent

Summary, in English

Garnet amphibolite metataxites at the Steningekusten Nature Reserve in southwestern Sweden contain tonalitic patches and veins. Whole rock chemistry suggests that the protoliths were mafic igneous rocks with alkaline affinities. Orthopyroxene megacrysts are present in leucosome in parts of these garnet amphibolites but absent in others. Orthopyroxene megacrysts were formed by vapor-absent melting initiated by incongruent melting of biotite followed by the breakdown of hornblende. The net reaction was Bt + Hbl + PI +/- Qtz <-> Opx + Melt + Cpx + Gt. Melting occurred at pressures of approximately 1 GPa and temperatures which probably exceeded 800 degrees C. Pyroxenes are surrounded by hornblende-quartz symplectites, and hornblende in these coronas has distinctly lower concentrations of (Na + K) and Ti than that in adjacent mesosorne. The hornblende rims formed upon cooling and reaction with crystallizing melt This created a barrier to further reaction thus preserving the orthopyroxene megacrysts. Garnet amphibolite metatexites lacking pyroxene megacrysts have features characteristic of vapor-present melting including lack of peritectic phases predicted by vapor-absent melting reactions, larger amounts of leucosome (14 versus 7%), and less distinct melanosomes. The variation in these migmatites reflects open system behavior, either on a regional scale with the migration of aqueous fluids into the amphibolites or on a local scale with the migration of melt within the amphibolites. Zircons from all units have CL-dark core domains that are dated at 1415-1390 Ma. The core zones are cut and overgrown by CL-dark and CL-bright rims that are dated at 975-965 Ma. The zircon rims are thin in the mesosome but are thicker in the leucosome suggesting that they formed during migmatization. New growth of zircon associated with migmatization at ca. 970 Ma corresponds to the timing of crustal scale partial melting in the deep regions of the Sveconorwegian orogen, synchronous with east-west extension and the intrusion of mafic dykes. If partial melting was driven by an influx of aqueous fluids, they were probably derived from a relatively cool source region, which would indicate tectonic juxtaposition of hotter and cooler terranes. (C) 2015 Elsevier B.V. All rights reserved.

Department/s

  • Lithosphere and Biosphere Science

Publishing year

2015

Language

English

Pages

27-45

Publication/Series

Lithos

Volume

236

Document type

Journal article

Publisher

Elsevier

Topic

  • Geology

Keywords

  • Migmatite
  • Vapor-present melting
  • Vapor-absent melting
  • Sveconorwegian
  • U-Pb zircon
  • Amphibolite

Status

Published

ISBN/ISSN/Other

  • ISSN: 0024-4937