The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Daniel Conley

Daniel Conley

Professor

Daniel Conley

Impact of human disturbance on the biogeochemical silicon cycle in a coastal sea revealed by silicon isotopes

Author

  • Zhouling Zhang
  • Xiaole Sun
  • Minhan Dai
  • Zhimian Cao
  • Guillaume Fontorbe
  • Daniel J. Conley

Summary, in English

Biogeochemical silicon (Si) cycling in coastal systems is highly influenced by anthropogenic perturbations in recent decades. Here, we present a systematic study on the distribution of stable Si isotopes of dissolved silicate (δ30SiDSi) in a highly eutrophic coastal system, the Baltic Sea. Besides the well-known processes, diatom production and dissolution regulating δ30SiDSi values in the water column, we combined field data with a box model to examine the role of human disturbances on Si cycling in the Baltic Sea. Results reveal that (1) damming led to increased δ30SiDSi values in water but had little impacts on their vertical distribution; (2) decrease in saltwater inflow due to enhanced thermal stratification had negligible impacts on the δ30SiDSi distribution. An atypical vertical distribution of δ30SiDSi with higher values in deep water (1.57–1.95‰) relative to those in surface water (1.24–1.68‰) was observed in the central basin. Model results suggest the role of enhanced biogenic silica (BSi) deposition and subsequently regenerated dissolved silicate (DSi) flux from sediments. Specifically, eutrophication enhances diatom production, resulting in elevated exports of highly fractionated BSi to deep water and sediments. In situ sedimentary geochemical processes, such as authigenic clay formation, further fractionate Si isotopes and increase pore-water δ30SiDSi values, which then leads to pore-water DSi flux carrying higher δ30SiDSi compositions into deep water. Our findings provide new quantitative information on how the isotope-based Si cycle responds to human perturbations in coastal seas and shed lights on shifts of Si export to open ocean.

Department/s

  • Quaternary Sciences
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year

2020-03

Language

English

Pages

515-528

Publication/Series

Limnology and Oceanography

Volume

65

Issue

3

Document type

Journal article

Publisher

ASLO

Topic

  • Oceanography, Hydrology, Water Resources

Status

Published

ISBN/ISSN/Other

  • ISSN: 1939-5590