The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Raimund Muscheler

Raimund Muscheler

Professor

Raimund Muscheler

Assessing the reliability of Holocene relative palaeointensity estimates: a case study from Swedish varved lake sediments

Author

  • Tania Stanton
  • Andreas Nilsson
  • Ian Snowball
  • Raimund Muscheler

Summary, in English

We present palaeomagnetic secular variation and relative palaeointensity estimates from multiple sediment cores recovered from a varved lake sediment sequence in Kalksjon, a lake in central west Sweden. Alternating field demagnetization of discrete samples reveals natural remanent magnetizations dominated by a stable, single component. Magnetic grain size indicators-which include Day plots and first-order reversal curves-indicate that the main carrier of the natural remanence is single-domain magnetite throughout the varved sequence, which extends to similar to 9200 cal. yr BP. The millennial-scale features of the Kalksjon relative palaeointensity, inclination and declination data are well matched against the Fennoscandian master curves FENNORPIS and FENNOSTACK, and a global dipole moment reconstruction curve. There is evidence, however, of environmental bias in the relative palaeointensity estimates during specific time intervals. We find that bias is particularly pronounced during the early Holocene, specifically between similar to 9000 and 7800 cal. yr BP. During this period the bias is apparent as a series of relative palaeointensity cycles, with a wavelength of similar to 300 years. Some bias is also evident between 7800 and 3200 cal. yr BP. By comparing Kalksjon's smoothed relative palaeointensity data with the reconstructed geomagnetic field intensity from C-14 on timescales longer than 500 years-thereby removing the effect of relatively high frequency environmental bias in the early Holocene-we suggest that a distinct peak in intensity at centred on similar to 8700 cal. yr BP is a true feature of the geomagnetic field. A minimum at similar to 7400 cal. yr BP and a maximum at similar to 2500 cal. yr BP are also robust features. Our main conclusion is that sedimentary-based relative palaeointensity reconstructions must be carefully assessed if short-term, centennial variations are to be examined.

Department/s

  • Quaternary Sciences
  • MERGE: ModElling the Regional and Global Earth system

Publishing year

2011

Language

English

Pages

1195-1214

Publication/Series

Geophysical Journal International

Volume

187

Issue

3

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Geology

Keywords

  • Environmental magnetism
  • Magnetic field
  • Palaeointensity
  • Palaeomagnetic secular variation
  • Rock and mineral magnetism
  • Europe

Status

Published

ISBN/ISSN/Other

  • ISSN: 0956-540X