The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Sanna Alwmark

Sanna Alwmark

Associate senior lecturer

Sanna Alwmark

Exceptional preservation of reidite in the Rochechouart impact structure, France: New insights into shock deformation and phase transition of zircon

Author

  • Anders Plan
  • Gavin G. Kenny
  • Timmons M. Erickson
  • Paula Lindgren
  • Carl Alwmark
  • Sanna Holm-Alwmark
  • Philippe Lambert
  • Anders Scherstén
  • Ulf Söderlund

Summary, in English

Reidite, the high-pressure zircon (ZrSiO4) polymorph, is a diagnostic indicator of impact events. Natural records of reidite are, however, scarce, occurring mainly as micrometer-sized lamellae, granules, and dendrites. Here, we present a unique sequence of shocked zircon grains found within a clast from the Chassenon suevitic breccia (shock stage III) from the ˜200 Ma, 20–50 km wide Rochechouart impact structure in France. Our study comprises detailed characterization with scanning electron microscopy coupled with electron backscatter diffraction with the goal of investigating the stability and response of ZrSiO4 under extreme P–T conditions. The shocked zircon grains have preserved various amounts of reidite ranging from 4% up to complete conversion. The grains contain various variants of reidite, including the common habits: lamellae and granular reidite. In addition, three novel variants have been identified: blade, wedge, and massive domains. Several of these crosscut and offset each other, revealing that reidite can form at multiple stages during an impact event. Our data provide evidence that reidite can be preserved in impactites to a much greater extent than previously documented. We have further characterized reversion products of reidite in the form of fully recrystallized granular zircon grains and minute domains of granular zircon in reidite-bearing grains that occur in close relationship to reidite. Neoblasts in these grains have a distinct crystallography that is the result of systematic inheritance of reidite. We interpret that the fully granular grains have formed from prolonged exposure of temperatures in excess of 1200 °C. Reidite-bearing grains with granular domains might signify swift quenching from temperatures close to 1200 °C. Grains subjected to these specific conditions therefore underwent partial zircon-to-reidite reversion, instead of full grain recrystallization. Based on our ZrSiO4 microstructural constraints, we decipher the grains evolution at specific P–T conditions related to different impact stages, offering further understanding of the behavior of ZrSiO4 during shock.

Department/s

  • Lithosphere and Biosphere Science

Publishing year

2021-08-19

Language

English

Pages

1795-1828

Publication/Series

Meteoritics and Planetary Science

Volume

56

Issue

10

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Geology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1086-9379