The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Sanna Alwmark

Sanna Alwmark

Associate senior lecturer

Sanna Alwmark

Estimating average shock pressures recorded by impactite samples based on universal stage investigations of planar deformation features in quartz-Sources of error and recommendations

Author

  • S. Holm-Alwmark
  • L. Ferrière
  • C. Alwmark
  • M. H. Poelchau

Summary, in English

Planar deformation features (PDFs) in quartz are the most widely used indicator of shock metamorphism in terrestrial rocks. They can also be used for estimating average shock pressures that quartz-bearing rocks have been subjected to. Here we report on a number of observations and problems that we have encountered when performing universal stage measurements and crystallographically indexing of PDF orientations in quartz. These include a comparison between manual and automated methods of indexing PDFs, an evaluation of the new stereographic projection template, and observations regarding the PDF statistics related to the c-axis position and rhombohedral plane symmetry. We further discuss the implications that our findings have for shock barometry studies. Our study shows that the currently used stereographic projection template for indexing PDFs in quartz might induce an overestimation of rhombohedral planes with low Miller-Bravais indices. We suggest, based on a comparison of different shock barometry methods, that a unified method of assigning shock pressures to samples based on PDFs in quartz is necessary to allow comparison of data sets. This method needs to take into account not only the average number of PDF sets/grain but also the number of high Miller-Bravais index planes, both of which are important factors according to our study. Finally, we present a suggestion for such a method (which is valid for nonporous quartz-bearing rock types), which consists of assigning quartz grains into types (A-E) based on the PDF orientation pattern, and then calculation of a mean shock pressure for each sample.

Department/s

  • Lithosphere and Biosphere Science

Publishing year

2018-01

Language

English

Pages

110-130

Publication/Series

Meteoritics and Planetary Science

Volume

53

Issue

1

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Geology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1086-9379