The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Sylvain Richoz

Sylvain Richoz

Senior lecturer

Sylvain Richoz

New constraints on the evolution of 87Sr/86Sr of seawater during the Upper Triassic

Author

  • Zsófia Kovács
  • Isaline Demangel
  • Sylvain Richoz
  • Dorothee Hippler
  • Andre Baldermann
  • Leopold Krystyn

Summary, in English

The Late Triassic time interval witnessed several important biological turnovers, extinctions and onset of new life forms. Therefore, it is crucial to better constrain the tectonic, climatic and oceanographic framework at this time. The radiogenic strontium isotopic composition (87Sr/86Sr) of seawater, recorded in marine carbonates is sensitive to variations in continental weathering and oceanic spreading rates. This makes it a powerful proxy for palaeo-environmental reconstructions and an excellent global stratigraphic correlation tool of marine sediment records. In this study, we present a new and extended 87Sr/86Sr dataset across the late Norian - Hettangian interval, established from carbonate successions in Austria and Turkey. The well-established biostratigraphy and high sampling resolution allow evaluating changes in the 87Sr/86Sr record with a better time constraint than in previous studies. An exceptionally sharp trend towards unradiogenic values has been observed in the latest Norian and in the early Rhaetian from 0.70800 to 0.70779. Considering Late Triassic climate change, updated tectonic models and actual dating of magmatic events, possible explanations for the observed trend in the 87Sr/86Sr record are: (i) enhanced dissolution of pre-Norian carbonates, (ii) dissolution of widespread Late Triassic evaporites and (iii) tectonic reorganization of sedimentary basins due to the break-up of the supercontinent Pangea. At the very end of the Choristoceras marshi Zone, in the late Rhaetian, the unradiogenic 87Sr/86Sr trend is reversed. This is likely related to environmental changes due to the continental emplacement of the Central Atlantic Magmatic Province.

Department/s

  • Lithosphere and Biosphere Science

Publishing year

2020

Language

English

Publication/Series

Global and Planetary Change

Volume

192

Document type

Journal article

Publisher

Elsevier

Topic

  • Geology

Keywords

  • Hettangian
  • Norian
  • Palaeo-environment
  • Radiogenic strontium
  • Rhaetian
  • Seawater evolution
  • Triassic/Jurassic boundary

Status

Published

ISBN/ISSN/Other

  • ISSN: 0921-8181