The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Dan Hammarlund

Dan Hammarlund


Dan Hammarlund

Quantifying the relative importance of lake emissions in the carbon budget of a subarctic catchment


  • Jan Karlsson
  • Torben Christensen
  • Patrick Crill
  • Johannes Forster
  • Dan Hammarlund
  • Marcin Jackowicz-Korczynski
  • Ulla Kokfelt
  • Charlotte Roehm
  • Peter Rosen

Summary, in English

Climate change and thawing of permafrost will likely result in increased decomposition of terrestrial organic carbon and subsequent carbon emissions to the atmosphere from terrestrial and aquatic systems. The quantitative importance of mineralization of terrestrial organic carbon in lakes in relation to terrestrial carbon fluxes is poorly understood and a serious drawback for the understanding of carbon budgets. We studied a subarctic lake in an area of discontinuous permafrost to assess the quantitative importance of lake carbon emission for the catchment carbon balance. Estimates of net ecosystem production and stable carbon-isotope composition of dissolved organic carbon in the lake water suggest substantial input and respiration of terrestrial organic carbon in the lake. The lake was a net source of CO2 and CH4 to the atmosphere at ice breakup in spring and during the whole ice-free period. The carbon emission from the lake was similar in magnitude to the terrestrial net release of carbon to the atmosphere. The results indicate that lakes are important sources of catchment carbon emission, potentially increasing the positive feedback from permafrost thawing on global warming.


  • Dept of Physical Geography and Ecosystem Science
  • Quaternary Sciences
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publishing year





Journal of Geophysical Research



Document type

Journal article




  • Physical Geography
  • Geology




  • ISSN: 2156-2202