The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Daniel Conley

Daniel Conley

Professor

Daniel Conley

Detecting environmental change in estuaries: Nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea

Author

  • S Vaalgamaa
  • Daniel Conley

Summary, in English

Historical sediment nutrient concentrations and heavy metal distributions were studied in four estuaries in the Gulf of Finland, Baltic Sea to examine the response of these estuaries to temporal changes in human activities. Cores were collected using a 1-m Mackereth corer and dated using Pb-210 and (CS)-C-137. The cores were analyzed for total carbon (TC), total nitrogen (TN), total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (IP), biogenic silica (BSi), loss-on-ignition (LOI), Cu, Zn, Al, Fe, Mn, K, Ca, Mg and Na. Principal component analysis (PCA) was used to summarize the trends in the chemical variables and to compare the trends at the different sites. Applying the 1986 Cs-137 date as a reference point, Pb-210 chronologies were constructed for the sites using either the CRS model or a composite model (using both CIC and CRS). Significant increases were observed in sedimentation rates, TP and TN concentrations in all of the cores. Copper showed clear increases from 1850 towards present at all sites. Furthermore, redundancy analysis (RDA) was used to correlate environmental variables (catchment land use, catchment size, estuary surface area, depth and lake percentage) to sediment geochemistry. Based on redundancy analysis (RDA), the percentage of agriculture in the catchment was the most important factor affecting the sediment accumulation rate. Urban land-use types and industry correlate well with sediment Cu and Ca concentrations. Forest areas were related to high sediment BSi concentrations. Catchment land use was the most significant factor affecting sediment geochemical composition and sediment accumulation rates in these coastal embayments. Our results demonstrate that the coastal estuaries of the Gulf of Finland respond to the increased nutrient loading with the increased sedimentation and nutrient accumulation rates.

Department/s

  • Quaternary Sciences

Publishing year

2008

Language

English

Pages

45-56

Publication/Series

Estuarine, Coastal and Shelf Science

Volume

76

Issue

1

Document type

Journal article

Publisher

Elsevier

Topic

  • Geology

Keywords

  • Baltic
  • Sea
  • sediment chronology
  • heavy metals
  • coastal sediments
  • nutrients

Status

Published

ISBN/ISSN/Other

  • ISSN: 1096-0015