Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Relict silicate inclusions in extraterrestrial chromite and their use in the classification of fossil chondritic material

Author:
  • Carl Alwmark
  • Birger Schmitz
Publishing year: 2009
Language: English
Pages: 1472-1486
Publication/Series: Geochimica et Cosmochimica Acta
Volume: 73
Issue: 5
Document type: Journal article
Publisher: Elsevier

Abstract english

Chromite is the only common meteoritic mineral surviving long-term exposure on Earth, however, the present study of relict chromite from numerous Ordovician (470 Ma) fossil meteorites and micrometeorites from Sweden, reveals that when encapsulated in chromite, other minerals can survive for hundreds of millions of years maintaining their primary composition. The most common minerals identified, in the form of small (<1-10 mu m) anhedral inclusions, are olivine and pyroxene. In addition, sporadic merrillite and plagioclase were found. Analyses of recent meteorites, holding both inclusions in chromite and corresponding matrix minerals, show that for olivine and pyroxene inclusions, sub-solidus re-equilibration between inclusion and host chromite during entrapment has led to an increase in chromium in the former. In the case of olivine, the re-equilibration has also affected the fayalite (Fa) content, lowering it with an average of 14% in inclusions. For Ca-poor pyroxene the ferrosilite (Fs) content is more or less identical in inclusions and matrix. By these studies an analogue to the commonly applied classification system for ordinary chondritic matrix, based on Fa in olivine and Fs in Ca-poor pyroxene, can be established also for inclusions in chromite. All olivine and Ca-poor pyroxene inclusions (>1.5 mu m) in chromite from the Ordovician fossil chondritic material plot within the L-chondrite field, which is in accordance with previous classifications. The concordance in classification together with the fact that inclusions are relatively common makes them an accurate and useful tool in the classification of extraterrestrial material that lacks matrix silicates, such as fossil meteorites and sediment-dispersed chromite grains originating primarily from decomposed micrometeorites but also from larger impacts. (C) 2008 Elsevier Ltd. All rights reserved.

Keywords

  • Geology

Other

Published
  • ISSN: 0016-7037
Carl Alwmark
E-mail: carl [dot] alwmark [at] geol [dot] lu [dot] se

Senior lecturer

Lithosphere and Biosphere Science

+46 46 222 78 71

383

Sölvegatan 12, Lund

16