The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

LU

Emma Hammarlund

Research team manager

LU

Do large predatory fish track ocean oxygenation?

Author

  • Tais W Dahl
  • Emma U Hammarlund

Summary, in English

The Devonian appearance of 1-10 meter long armored fish (placoderms) coincides with geochemical evidence recording a transition into fully oxygenated oceans.1 A comparison of extant fish shows that the large individuals are less tolerant to hypoxia than their smaller cousins. This leads us to hypothesize that Early Paleozoic O(2) saturation levels were too low to support >1 meter size marine, predatory fish. According to a simple model, both oxygen uptake and oxygen demand scale positively with size, but the demand exceeds supply for the largest fish with an active, predatory life style. Therefore, the largest individuals may lead us to a lower limit on oceanic O(2) concentrations. Our presented model suggests 2-10 meter long predators require >30-50% PAL while smaller fish would survive at <25% PAL. This is consistent with the hypothesis that low atmospheric oxygen pressure acted as an evolutionary barrier for fish to grow much above ∼1 meter before the Devonian oxygenation.

Department/s

  • Division of Translational Cancer Research

Publishing year

2011-01

Language

English

Pages

4-92

Publication/Series

Communicative and Integrative Biology

Volume

4

Issue

1

Document type

Journal article

Publisher

Landes Bioscience

Keywords

  • Journal Article

Status

Published

ISBN/ISSN/Other

  • ISSN: 1942-0889