The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

LU

Emma Hammarlund

Research team manager

LU

Disentangling the record of diagenesis, local redox conditions, and global seawater chemistry during the latest Ordovician glaciation

Author

  • Anne Sofie C Ahm
  • Christian J Bjerrum
  • Emma U. Hammarlund

Summary, in English

The Late Ordovician stratigraphic record integrates glacio-eustatic processes, water-column redox conditions and carbon cycle dynamics. This complex stratigraphic record, however, is dominated by deposits from epeiric seas that are susceptible to local physical and chemical processes decoupled from the open ocean. This study contributes a unique deep water basinal perspective to the Late Ordovician (Hirnantian) glacial record and the perturbations in seawater chemistry that may have contributed to the Hirnantian mass extinction event. We analyze recently drilled cores and outcrop samples from the upper Vinini Formation in central Nevada and report combined trace- and major element geochemistry, Fe speciation (FePy/FeHR and FeHR/FeT), and stable isotope chemostratigraphy (δ13COrg and δ34SPy). Measurements of paired samples from outcrop and core reveal that reactive Fe is preserved mainly as pyrite in core samples, while outcrop samples have been significantly altered as pyrite has been oxidized and remobilized by modern weathering processes. Fe speciation in the more pristine core samples indicates persistent deep water anoxia, at least locally through the Late Ordovician, in contrast to the prevailing interpretation of increased Hirnantian water column oxygenation in shallower environments. Deep water redox conditions were likely decoupled from shallower environments by a basinal shift in organic matter export driven by decreasing rates of organic matter degradation and decreasing shelf areas. The variable magnitude in the record of the Hirnantian carbon isotope excursion may be explained by this increased storage of isotopically light carbon in the deep ocean which, in combination with increased glacio-eustatic restriction, would strengthen lateral- and vertical gradients in seawater chemistry. We adopt multivariate statistical methods to deconstruct the spatial and temporal re-organization of seawater chemistry during the Hirnantian glaciation and attempt to isolate the latent magnitude and global perturbation in the carbon cycle. We speculate, using a two component mixing model and residual estimates from principal component analysis, that the secular open ocean Hirnantian C isotope excursion possibly amounts to only ∼ +1.5‰. Such an increase could be mechanistically driven by the combination of sea-level fall, persistent deep water anoxia, and cooler glacial temperatures that increased the organic carbon burial efficiency in the deeper basins.

Publishing year

2017-02-01

Language

English

Pages

145-156

Publication/Series

Earth and Planetary Science Letters

Volume

459

Document type

Journal article

Publisher

Elsevier

Keywords

  • deep water anoxia
  • glacioeustasy
  • Hirnantian extinction
  • iron speciation
  • multivariate statistics
  • sulfur isotopes

Status

Published

ISBN/ISSN/Other

  • ISSN: 0012-821X